Adding Tenths and Hundredths — Let's Practice!
Basics on the topic Adding Tenths and Hundredths — Let's Practice!
Today we are practicing adding tenths and hundredths with Razzi! This video contains examples to help you further practice and grow confident in this topic.
Transcript Adding Tenths and Hundredths — Let's Practice!
Razzi says get these item ready, because today we're going to practice adding tenths and hundredths. It's time to begin! Solve thirtyfive hundredths plus threetenths. Pause the video to work on the problem, and press play when you are ready to see the solution! We need like denominators to add. Start by converting threetenths. Multiply the numerator and denominator by ten to get thirtyhundredths. Then, carry over one hundred for the denominator. Thirtyfive plus thirty equals sixtyfive. Did you also get sixtyfive hundredths? Let's tackle the next problem! Solve threehundredths plus fivetenths. Pause the video to work on the problem, and press play when you are ready to see the solution! We need like denominators to add. Start by converting fivetenths. Multiply the numerator and denominator by ten to get fiftyhundredths. Then, carry over one hundred for the denominator. Three plus fifty equals fiftythree. Did you also get fiftythree hundredths? Let's tackle the final problem! Solve thirtyhundredths plus twotenths. This time, convert thirtyhundredths to tenths! Pause the video to work on the problem, and press play when you are ready to see the solution! Start by converting thirty hundredths to tenths. Divide the numerator and denominator by ten to get threetenths. Then, carry over ten for the denominator. Three plus two equals five. Five tenths can be converted to one half! Did you also get five tenths or one half? Razzi had so much fun practicing with you today! See you next time!
Adding Tenths and Hundredths — Let's Practice! exercise

Identify the expressions that are equivalent.
HintsTo compare the expressions, you must first create likedenominators.
The fractions, $\frac{55}{100}$ and $\frac{3}{100}$ share like denominators. The fractions, $\frac{55}{100}$ and $\frac{3}{10}$ do not.
SolutionWhen you add tenths and hundredths you need to first make sure the denominators are the same. By multiplying the numerator and the denominator of $\frac{3}{10}$ you make $\frac{30}{100}$, which you can then add to $\frac{35}{100}$. The same applies with $\frac{5}{10}$, $\frac{3}{10}$, and $\frac{4}{10}$.
 $\frac{3}{10}$ x 10 = $\frac{30}{100}$ = $\frac{35}{100}$ + $\frac{30}{100}$
 $\frac{5}{10}$ x 10 = $\frac{50}{100}$ = $\frac{3}{100}$ + $\frac{50}{100}$
 $\frac{6}{10}$ x 10 = $\frac{60}{100}$ = $\frac{60}{100}$ + $\frac{2}{100}$
 $\frac{4}{10}$ x 10 = $\frac{40}{100}$ = $\frac{40}{100}$ + $\frac{45}{100}$

Identify the expressions that are equivalent.
HintsTo compare the expressions, you must first create likedenominators.
To compare the expressions, you must first create likedenominators.
The fractions, $\frac{55}{100}$ and $\frac{33}{100}$ share like denominators. The fractions, $\frac{55}{100}$ and $\frac{33}{10}$ do not.When creating like denominators don't forget to divide or multiply the numerator as well!
Solution $\frac{50}{100}$ ÷ 10 = $\frac{5}{10}$
 $\frac{20}{100}$ ÷ 10 = $\frac{2}{10}$
 $\frac{40}{100}$ ÷ 10 = $\frac{4}{10}$
 $\frac{10}{100}$ ÷ 10 = $\frac{1}{10}$

Solve the equations.
HintsUse a pencil and paper to help you keep track of the steps.
With the equation, $\frac{35}{100}$ + $\frac{3}{10}$, and $\frac{3}{100}$ + $\frac{5}{10}$, it is easiest to multiply to create like denominators.
With the equation, $\frac{30}{100}$ + $\frac{2}{10}$, it is easiest to divide to create like denominators.
Do NOT simplify the fractions!
Solution $\frac{35}{100}$ + $\frac{3}{10}$ = $\frac{35}{100}$ + $\frac{30}{100}$ = $\frac{65}{100}$
 $\frac{3}{100}$ + $\frac{5}{10}$ = $\frac{3}{100}$ + $\frac{50}{100}$ = $\frac{53}{100}$
 $\frac{30}{100}$ + $\frac{2}{100}$ = $\frac{3}{10}$ + $\frac{2}{10}$ = $\frac{5}{10}$

Simplify the solutions.
HintsIn the solution to $\frac{40}{100}$ + $\frac{40}{100}$, both 80 and 100 can be divided by 10. This solution can then be further simplified by dividing by 2.
Simplify the answer as many times as necessary.
Solution $\frac{40}{100}$ + $\frac{40}{100}$ = $\frac{80}{100}$
 $\frac{80}{100}$ ÷ $\frac{10}{10}$ = $\frac{8}{10}$
 $\frac{8}{10}$ ÷ $\frac{2}{2}$ = $\frac{4}{5}$

Convert the tenths fraction to hundredths using multiplication.
HintsAlways remember to multiply both the numerator (above) and denominator (below) by the same number.
Multiply or divide to create like denominators before attempting to solve.
Solution 7 x 10 = 70, 10 x 10 = 100
 $\frac{70}{100}$ + $\frac{8}{100}$ = $\frac{78}{100}$

Solve the equations.
HintsIn the equation, $\frac{20}{100}$ + $\frac{5}{10}$, $\frac{20}{100}$ can be divided by 10 to make equal denominators.
Remember to simplify as many times as necessary. If there is a common denominator between the numerator and denominator, divide again!
Solution $\frac{20}{100}$ + $\frac{5}{10}$ = $\frac{2}{10}$ + $\frac{5}{10}$ = $\frac{7}{10}$
 $\frac{30}{100}$ + $\frac{2}{10}$ = $\frac{3}{10}$ + $\frac{2}{10}$ = $\frac{5}{10}$ = $\frac{1}{2}$
 $\frac{3}{10}$ + $\frac{50}{100}$ = $\frac{3}{10}$ + $\frac{5}{10}$ = $\frac{8}{10}$ = $\frac{4}{5}$
 $\frac{4}{10}$ + $\frac{20}{100}$ = $\frac{4}{10}$ + $\frac{2}{10}$ = $\frac{6}{10}$ = $\frac{3}{5}$
Adding Fractions on a Number Line
Adding Fractions with Like Denominators
Adding Tenths and Hundredths
Adding Tenths and Hundredths — Let's Practice!
Adding and Subtracting Mixed Numbers
Adding Fractions on a Number Line — Let's Practice!
Adding Fractions with Unlike Denominators
Adding Mixed Numbers with Unlike Denominators