Comparison Shopping: Unit Price and Related Measurements

Basics on the topic Comparison Shopping: Unit Price and Related Measurements
After this lesson, you will be able to use unit price to make comparisons in tables, equations, graphs, and real-world scenarios.
The lesson begins with how to determine unit rate, using tables, graphs, and equations. This leads to a strategy for comparing unit rates, to determine the best value. The video concludes with a scenario that uses unit price to make comparisons.
Learn about unit price by helping Gabe get the best value when upgrading his Galactic Gorillas action figures!
This video includes key concepts, notation, and vocabulary such as: unit rate (the ratio of two measurements in which the second term is 1); unit price (a unit rate which measures cost per item); the graph of a direct proportion (a line that goes through the origin); slope (the rate of change in a linear equation).
Before watching this video, you should already be familiar with unit rates and setting up and solving proportions.
After watching this video, you will be prepared to use rates to convert from one measurement unit to another.
Common Core Standard(s) in focus: 6.RP.2, 6.RP.3.b A video intended for math students in the 6th grade Recommended for students who are 11-12 years old
Transcript Comparison Shopping: Unit Price and Related Measurements
Gabe is always playing his Galactic Gorillas toys-to-life video game, which allows him to bring special action figures to life. Gabe is currently deciding which character's defense to upgrade using the points he has earned from hours of play. To figure out how to get the best value per point, let's see how Gabe applies comparison shopping using unit price and related measurements. This table shows how many points Gabe has to spend in order to upgrade his defense units for Corporal Greta. This graph shows the same relationship for Private Gary. And this equation shows Major George's defense units based on points spent. Which character will give Gabe the best defense per point? To find out, let's determine the unit rate of each offer. Remember, UNIT RATE is the ratio of two measurements in which the second term is 1. The table, graph, and equation each express the value of Gabe's points for defense in different ways. To compare all three, we convert each of the representations to the same rate: defense to points. To find the unit rate per point in the table, pick any row. This row tells us that for 250 points we can get 40 defense units. Putting these values into our ratio, we can now divide 40 by 250. This gives us a unit rate of zero point one six defense units per point. Now looking at the graph for Private Gary, we notice that this line goes through the origin. This means the graph represents a direct proportion. Therefore, to find the unit rate we can pick any point and put it into our ratio of defense to points. Let's pick this point, 55, 11. 11 over 55 simplifies to one fifth. In order to compare we need to find the unit rate per point. So, we still need a one in the denominator. To get that, we divide 5 by 5. And to keep the ratio equivalent, we must also divide 1 by 5. That gives us the unit rate of zero point 2 defense units per point. When looking at this linear equation for Major George, can you identify the slope? If you said 9 over 50, you're right! To make sure this slope actually represents the defense over points rate, we could isolate the ratio by dividing both sides by p. This gives us the proportion d over p equals 9 over 50, where 'd' represents defense and 'p' stands for points. So, 9 to 50 is the defense to points rate. However, we still need the unit rate per point. Just like before, we divide the numerator and denominator both by the value in the denominator, and are now left with zero point one eight defense units per point. Comparing the three unit rates, we see that Gabe's points get him the most defense with Private Gary. Time to upgrade, but whoa! Wait! What's that? An online deal for a four pack of the newest toys to life figurines in the Galactic Gorillas collection? "And it only costs 9 a piece. The two-packs costs 9. We can see the ratio of cost per unit holds true at 17 for two figurines. Therefore, we can substitue into the ratio 17 dollars to two figurines and just divide. This means the unit price is 34.40. To get the unit price we set-up the ratio again. This allows us to take 34.40 and divide it by 4. That gives us the unit rate of 8.50 is the lowest unit price, and therefore the best deal. Because Gabe still wants all four figurines, he decides to buy two of the two-packs to complete his Galactic Gorillas collection. Let's summarize the steps he took to be a comparison shopping pro. We compared unit rates, sometimes known as unit prices. Unit rates can be located in tables, graphs, equations, and real-life scenarios. To find the unit rate in any of these situations, first, set-up the ratio for the rate you want to find. Second, substitute your corresponding values. Third, reduce to a denominator of one by dividing. Looks like Gabe will be able to always find the best bargain in order to save. But something else catches his attention. No wonder they were having a sale. Looks like Galactic Gorillas was so last week.