Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Atmung – Regulation der Sauerstoffkonzentration im Blut

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.7 / 14 Bewertungen
Die Autor*innen
Avatar
Maja O.
Atmung – Regulation der Sauerstoffkonzentration im Blut
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Atmung – Regulation der Sauerstoffkonzentration im Blut Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Atmung – Regulation der Sauerstoffkonzentration im Blut kannst du es wiederholen und üben.
  • Definiere die Elemente eines Regelkreisschemas.

    Tipps

    Ein Regelkreis ist per Definition ein Kreislauf. Male dir diesen Kreislauf auf ein Blatt Papier und trage die oben genannten Elemente ein. Überlege, welche Reihenfolge sinnvoll ist.

    Betrachte die Elemente des Regelkreises noch einmal genauer und schaue dir besonders die Wortbestandteile an, aus denen sie zusammengesetzt sind. Achte auf die Bestimmungswörter wie Mess..., Stell..., Stör..., oder Regel....
    Was bedeuten sie?

    Lösung

    Ein Regelkreis ist ein sich selbst regulierendes, geschlossenes System. Viele biologische und auch technische Abläufe werden über Regelkreise reguliert, zum Beispiel der Blutzuckerspiegel, die Körpertemperatur und die Populationsdichte, oder die Temperatur einer Zentralheizung oder eines Kühlschranks.

    Ein Regelkreis dient dazu, eine bestimmte Größe (die Regelgröße) konstant zu halten. Dafür wird die Regelgröße über Messglieder oder auch Messfühler gemessen und dieser Wert als IST-Wert an den Regler übermittelt. Der Regler vergleicht den IST-Wert mit dem vorgegebenen SOLL-Wert. Gibt es eine Differenz zwischen diesen beiden Werten, wird das Stellglied aktiviert, welches über die Stellgröße die Regelgröße an den SOLL-Wert anpasst. Veränderungen in der Regelgröße geschehen durch Störgrößen.

  • Beschreibe, wie die Sauerstoffkonzentration im Blut reguliert wird.

    Tipps

    Du hast in der vorherigen Aufgabe bereits Definitionen für die Bestandteile eines allgemeingültigen Regelkreises erarbeitet. Wende diese Definitionen nun an, um zu erkennen, welches Element im Regelkreis welchem Element bei der Regulation der Sauerstoffkonzentration im Blut entspricht.

    Um die oben genannten Elemente in die richtige Reihenfolge zu bringen, brauchst du zunächst den korrekten Startpunkt. Überlege genau, auf welche der Elemente der Begriff Regelgröße zutrifft.

    Lösung

    Die Regelgröße bei der Regulation der Sauerstoffkonzentration im Blut sind die sogenannten Blutgaswerte, also der Gehalt an Sauerstoff und Kohlenstoffdioxid. Diese gilt es, unabhängig von sämtlichen körperlichen Anforderungen konstant zu halten. Dafür werden sie über Chemorezeptoren an den Halsschlagadern, der Aorta und im Gehirn gemessen und dieser Wert als IST-Wert an das Atemzentrum weitergeleitet. Dieses im Nachhirn gelegene Zentrum vergleicht den IST-Wert mit einem vorgegebenen Idealwert oder auch SOLL-Wert. Weichen die beiden voneinander ab, wird durch das Atemzentrum die Atemmuskulatur, bestehend aus Zwischenrippenmuskulatur und Zwerchfell, aktiviert. Mithilfe der Atemmuskulatur wird das Atemzugvolumen (die Atemtiefe) und Atemfrequenz so angepasst, dass sich der IST-Wert der Blutgaswerte dem SOLL-Wert wieder annähert.

  • Erkläre die Atemregulation anhand eines Beispiels.

    Tipps

    Schau dir das Diagramm noch mal genau an. Die meisten benötigten Information kannst du dieser Abbildung entnehmen. Überlege dir, welcher Graph was darstellt und wie sich diese Größe mit zunehmender Laufbandgeschwindigkeit verändert.

    Der zweite Textabschnitt besteht im Prinzip aus einer Wiederholung des Regelkreises für die Regulation der Sauerstoffkonzentration im Blut. Bei der Störgröße handelt es sich hierbei um das Laufen mit erhöhter Geschwindigkeit. Dies stellt eine körperliche Belastung dar. Wie reagieren die anderen Elemente des Regelkreises auf diese Belastung?

    Lösung

    Durch die Belastung des Laufens auf einem Trainingsgerät erhöht sich der Energiebedarf des Körpers. Bei der Produktion von Energieträgern wird, unter anderem, Sauerstoff verbraucht und in Kohlenstoffdioxid umgewandelt. Betreiben wir Sport, sinkt also der Sauerstoffgehalt bzw. steigt der Kohlenstoffdioxidgehalt im Blut. Diese Werte werden von den Chemorezeptoren im Gehirn und den großen Blutgefäßen an das Atemzentrum übermittelt. Beim Vergleich von SOLL- und IST-Werten ist eine Differenz erkennbar, genauer ein Sauerstoffdefizit und ein Kohlenstoffdioxidüberschuss.

    Als Folge aktiviert das Atemzentrum die Atemmuskulatur, welche dafür sorgt, dass das Atemzugvolumen und Atemfrequenz erhöht werden. Beides sorgt dafür, dass mehr Sauerstoff in der Lunge zur Verfügung steht und gleichzeitig mehr Kohlenstoffdioxid abgeatmet werden kann. Damit der Abtransport von Kohlenstoffdioxid und die Sauerstoffaufnahme möglichst effizient abläuft, wird die Durchblutung der Lungenkapillaren erhöht. Dies geschieht mit einer Steigerung der Herzfrequenz. Somit wird der Gehalt an Sauerstoff und Kohlenstoffdioxid im Blut wieder den Idealwerten angepasst.

  • Vergleiche den Regelkreis zur Regulation der Atmung mit einem Klimacomputer.

    Tipps

    Zeichne schematisch einen Regelkreis und trage jetzt die einzelnen Elemente aus dem Regelkreis Klimacomputer, sowie dem Regelkreis Atemregulation ebenfalls ein, um deine Gedanken zu ordnen.

    Lösung

    In der nachstehenden Tabelle sind die einzelnen Bestandteile der Regelkreisschemata für den Klimacomputer sowie die entsprechenden Elemente bei der Atemregulation eingetragen.

    $\begin{array}{l|c|c} \color{#669900}{\ddot{\text{U}}\text{berbegriff}} & \color{#669900}{\text{Klimacomputer}}& \color{#669900}{\text{Atemregulation}}\\ \hline \text{Regelgr}\ddot{\text{o}}\text{ße} & \text{ideales Klima} & \text{Sauerstoffgehalt}\\ \hline \text{Messglied} & \text{Temperatursensor} & \text{Chemorezeptor}\\ \hline \text{F}\ddot{\text{u}}\text{hrungsglied} & \text{G} \ddot{\text{a}} \text{rtner} & \text{Gehirn}\\ \hline \text{Regler} & \text{Klimacomputer} & \text{Atemzentrum}\\ \hline \text{St}\ddot{\text{o}}\text{rgr}\ddot{\text{o}}\text{ße} & \text{Außentemperatur}& \text{Belastung}\\ \hline \text{Stellglied} & \text{Heizung} & \text{Atemmuskulatur}\\ \end{array}$

  • Beschreibe die mechanische und chemische Kontrolle der Atmung.

    Tipps

    Überlege dir, worin der grundlegende Unterschied zwischen mechanischer und chemischer Kontrolle besteht. An welchem Ort macht eine mechanische Kontrolle der Lunge am meisten Sinn?

    Lösung

    Die mechanische Kontrolle der Lungentätigkeit läuft über Dehnungsrezeptoren. Diese befinden sich im Lungengewebe, sowie der Zwischenrippenmuskulatur und werden durch eine Volumenzunahme der Lunge beim Einatmen stimuliert. Ab einem bestimmten Punkt geben diese Rezeptoren Signale an das Atemzentrum weiter, woraufhin die Einatmung gehemmt wird, um eine Überdehnung der Lunge zu vermeiden. Stattdessen wird die Atemfrequenz erhöht. Auch bestimmte Dehnungsrezeptoren in Muskeln und Sehnen sind mit der Lunge gekoppelt. Werden sie bei körperlicher Belastung stimuliert, reagiert das Atemzentrum mit einer Erhöhung der Atemfrequenz und dem Atemzugvolumen.

    Die chemische Kontrolle der Atemtätigkeit läuft über Chemorezeptoren. Diese messen den Gehalt an Kohlenstoffdioxid, Sauerstoff, sowie den pH-Wert im Blut und in der Hirnflüssigkeit. Daher befinden sich diese Rezeptoren im Gehirn selbst, sowie an der Halsschlagader und der Aorta. Wird ein Anstieg des Kohlenstoffdioxidgehalts bzw. ein Absinken des Sauerstoffgehalts registriert, aktiviert das Atemzentrum die Atemmuskulatur und erhöht Atemfrequenz und Atemzugvolumen.

  • Wende dein Wissen über die Atemregulation auf das Beispiel der Hyperventilation an.

    Tipps

    Die Erhöhung der Kohlenstoffdioxidkonzentration im Blut ist ein deutlich stärkerer Atemantrieb als die Verringerung der Sauerstoffkonzentration im Blut. Der Atemreiz wird also durch zu viel Kohlenstoffdioxid ausgelöst, nicht durch zu wenig Sauerstoff. Bei der Hyperventilation wird der Gehalt an Kohlenstoffdioxid im Blut stark abgesenkt. Was bedeutet das für die Auslösung des Atemreizes?

    Lösung

    Die Hyperventilation vor einem Tauchgang ist sehr gefährlich. Hierbei wird der Gehalt an Kohlenstoffdioxid im Blut durch schnelle, heftige Atmung künstlich abgesenkt. Dadurch wird der Atemreiz hinausgezögert, welcher durch eine Erhöhung des Kohlenstoffdioxidgehalts im Blut auf einen bestimmten Schwellenwert ausgelöst wird. Der Taucher kann folglich mit Hyperventilation länger unter Wasser bleiben als ohne. Da Tauchen eine große Belastung für den Körper darstellt, ist der Sauerstoffverbrauch währenddessen deutlich erhöht. Der Gehalt an Sauerstoff im Blut nimmt kontinuierlich ab und nähert sich der Ohnmachtschwelle (im Beispiel nach 70 Sekunden Tauchzeit), wohingegen der Kohlenstoffdioxidgehalt zum Zeitpunkt der Ohnmacht noch nicht hoch genug ist, um einen Atemreiz auszulösen. Im Beispiel geschieht dies erst bei 80 Sekunden Tauchzeit, also 10 Sekunden nach der Ohnmacht.

    Wird ohne vorherige Hyperventilation getaucht, ist die Gefahr des Schwimmbad-Blackouts deutlich geringer, weil hier das Level an Kohlenstoffdioxid vor dem Tauchen nicht durch eine falsche Atmung abgesenkt wird. Stattdessen wird nur wenige Male tief eingeatmet. Während des Tauchganges sinkt der Gehalt an Sauerstoff und das Kohlenstoffdioxidlevel steigt an. Ab einer bestimmten Konzentration, welche im Beispiel nach 50 Sekunden auftritt, wird der Atemreiz ausgelöst. Der Taucher ist hierbei bei Bewusstsein und kann vorher auftauchen.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.951

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.908

Lernvideos

36.934

Übungen

34.194

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden